

FOREWO Scope 1 2 Norma Samp 3 4 Markir 5 Testin 6 Pass 7 Major 8 Repor 9 Modifi Test p 10 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8

•	
10.8.1	Purpose
	Apparati
	Procedu
	Final me
	Requirer
	t endura
•	Purpose
	Hot-spot
	Classific
	Apparatu
	Procedui
	Final me
	Requirer
	econditio
10.10 OV pre	Purpo
10.10.2	Appar
10.10.4	
10.10.5	
	al cyclin
10.11.1	Purpo
10.11.2	
10.11.3	
10.11.4	Final ı
10.11.5	· •
	ity-freez
	Purpo
	Appar
	Proce
	Final ı
10.12.5	Requi
10.13 Damp	heat test
10.13.1	Purpo
10.13.2	Proce
10.13.3	Final ı
10.13.4	Requi
10.14 Robus	tness of
10.14.1	Purpo.
10.14.2	Types
10.14.3	Procee
10.14.4	Final r
10.14.5	Requir
	akage cu
10.15.1	
10.15.2	-
10.15.3	
10.15.4	
10.16 Mecha	•
10.16.1	
13.16.1	. arpod

10.16.2	Αŗ
10.16.3	Pr
10.16.4	Fii
10.16.5	R€
10.17 Hail tes	št
10.17.1	Pւ
10.17.2	Αp
10.17.3	Pr
10.17.4	Fi
10.17.5	Re
10.18 Bypass	dio
10.18.1	Pυ
10.18.2	- Ap
10.18.3	Pr
10.18.4	Pr
10.18.5	Fir
10.18.6	Re
10.19 Light-se	oakii
10.19.1	Pu
10.19.2	Аp
10.19.3	Pr
10.19.4	Fir
10.19.5	Re
Bibliography	

Figure 1 – Qualification Figure 2 – NOCT correct Figure 3 – Hot-spot effe

Figure 3 – Hot-spot effects

Figure 4 – Thermal cyc

Figure 5 – Humidity-fre

Figure 6 – Hail test equ Figure 7 – Impact locat

Figure 8 – Bypass Diod

Table 1 – Summary of t

Table 2 – Ice ball mass

Table 3 – Impact location

- Modified the wording without failure.
- Added requirements
- Removed the "Twist test.
- Made the pass/fail cr the module area.
- Added the temperatul.
- Modified temperature or a solar simulator.
- Deleted reference pla
- Added apparatus sec edition 1.
- Rewrote the hot-spot
- Eliminated edge dip r
- Changed mechanical
- Added bypass diode

The text of this standard

Full information on the v voting indicated in the ab

This publication has been

The committee has decident the maintenance result of the data related to the sp

- · reconfirmed,
- withdrawn,
- replaced by a revised
- amended.

The m manufa or reco

NOTE sequend 61

Th se

5

Th Fig in wh 10 an IEC wit

NO sec For afte

NO

An tes

In mc om

Th a s the

Te:

6

A r IEC

a)

b) c) d) e)

f)

f)
If to have model

A statement that the certificate or report shall not be reproductive written approval of the laboratory.

A copy of this report shall be kept by the laboratory and manufact

⁹ Modifications

Any change in the design, materials, components or processing repetition of some or all of the qualification tests to maintain type

61 10. 10. 10, 10_ 10_ 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. _ 10.1 10.

10.1 Visual

10.1.1 Pur

To detect any

10.1.2 Pro

Carefully ins following con

- cracked,
- faulty inte
- voids in,
- visible co.
- failure of
- bubbles of module;
- tacky surf
- faulty terr
- any other

Make note delamination, subsequent to

10.1.3 Req

Visual conditi purpose of ty

10.2 Maxim

10.2.1 Purp

To determine tests. Repeat

10.2.2 App

- a) A radiant with IEC 6
- b) A PV refe the refere technolog
- c) A suitable normal to
- d) Apparatus

10.2.3 Proa

Determine the a specific se

temperature betw using natural sur IEC 60904-9. In different range of temperature and modules tempera For nonlinear moirradiance and w assure that peak minimize the ma particular module

NOTE The control m

10.3 Insulation

10.3.1 Purpose

To determine whe parts and the fran

10.3.2 Apparati

- a) A d.c. voltage twice the max4) according to
- b) An instrument

10.3.3 Test con

The test shall be (see IEC 60068-1

10.3.4 Procedu

- a) Connect the insulation test
- b) Connect the e If the module the foil around the glass superstranegative termi
- c) Increase the maximum equ system voltag maximum syst Maintain the v
- d) Reduce the ar to discharge th
- e) Remove the sl
- f) Increase the v 500 V or the m voltage at this
- g) Reduce the ap to discharge th
- h) Remove the st

10.3.5

- no di
- -- for n than
- for nthe a

10.4 M

10.4.1

To deter from mo which the irradiance measuring coefficienthe mod condition

10.4.2

The follo

- a) a rad with
- b) a PV deter
- c) any e
- d) a sui plane
- e) appa

10.4.3

There ar

10.4.3.1

- a) Meas
 - th
 - tr le
 - _ th<mark>!</mark>
- b) Mour direc

NOTE within correc

- c) If the contr
- d) If ten the s temp_l

the test specim warm up natu equilibrium tem

- e) Record the cu with recording desired temper the shade.
- f) The irradiance current (I_{sc}) of should be app specified temp

Where α_{rc} is the

g) Adjust the tem test module as test module m item d) perforr

- h) Ensure that the constant with remains constant be taken at 1 translation car as defined in
- i) Repeat steps is at least 30 A minimum of

10.4.3.2 Proce

- a) Determine the temperature,
- b) Mount the test instrumentation
- c) Set the irradia item a).
- d) Heat or cool desired tempo steps of app measurement

NOTE 1. The completemperature change

NOTE 2 Care shoumeasurement.

10.4.3.3 Calcd

- a) Plot the value squares-fit cu
- b) From the slot Calculate α ,

61 a) b) c) d) e) ·f) 10 Til wit He ho Co the be ins ou Su mc grd sha of 10. a) b) c)

10. a) b) c) d) e) 10.6 10. Mai 1 00 usir IEC 10.0 Hes irra IEC req If the 10.7 10.7 To irrac 10.7 a) b) c) d) e)

Detu of 2 usin sha 6164

does redu

10.8

10.8.

To moutdo

NOTE becau be use

10.8.

- a) A ±:
- b) M irı
- c) A

10.8.

- a) A m re
- b) S uı

10.8.

Repe

10.8.

- ոգ
- th
- in

10.9

10.9.

To demeltir

10.9.2

Hot-s circuit occur which

NOTE cells. 1 revers**e**.

10.9.4 Appar

- a) Radiant sou conforming
- b) Module I-V
- c) Equipment f
- d) Opaque cov
- e) An appropri

10.9.5 Proce

The hot-spot te spot protective module is tested

10.9.5.1 Cas

- a) Expose the stabilization maximum pound
 precondition
- b) Short-circuit
- c) Starting fron Move the co shaded cells of the non-s the selected
- d) Move an op monitor the falls outside size of the attained aga
- e) The final wie worst case s
- f) Remove the

NOTE Revers irregularly spre

- g) Re-measure
- h) Place the co
- i) Expose the i temperature condition of the $I_{\rm sc}$ within
- j) Maintain the
- k) At the end o appropriate t

10.9.5.2 Case

a) Expose the attained, me

- c) Re-n
- d) Appl of 1
- e) At the appr

10.9.5.3

- a) Expc stabi maxi
- b) Ther follov I_{min} /

P: nu

- c) Shon
- d) Start comp (num rangi dissi
- e) Cut t
- f) Move at a rang maxi shall
- g) Re-m
- h) Place
- i) Expo temp condithe I_t
- j) Main ^J
- k) At th appru

10.9.6

Repeat t

NOTE Th

10.9.7

- Noe^j
- Insul

NOTE 1

NOTE 2 film layers

10.10 UV

10.10.1 P

To precond freeze test degradation

10.10.2 A

- a) Equipmequipm
- b) Means ±2 °C. module to moni
- c) Instrum light so 320 nm

- d) A UV Ii ±15 % o below 2 regions
- e) A load s

10.10.3 Pr

- a) Using th and en 250 W·r ±15 % ɑ
- b) Attach a selectea tempera
- c) Subject between band be prescrit

10.10.4 Fit

Repeat test

10.10.5 R€

- no evid∉
- insulatic

10.11 The

10.11.1 Pu

To determi stresses ca 10.11.

- a) A o anor
- b) Me cire lov
- c) Me ±1
- d) Me mo

10.11.

- a) Ins
- b) Contem tem mid tem
- c) Clo -4(cha the 10 the
- d) Thr mo

10.11.4

After a

61 10 --10 To hui 10. a) b) c) d) Module temperature (°C)

- a) Attach a middle.
- b) Instali ti
- c) Connec
- d) After cid Figure f levels a the max
- e) Through module(

10.12.4 Fit

Repeat test

10.12.5 Re

- No evidence
- Insulation
- No oper

10.13 Dam

10.13.1 Pu

To determine humidity.

10.13.2 Pr

The test sha

- a) Precond The morprecond
- b) Severition
 The folion
 Test ten
 Relative
 Test dur

10.13.3 Fir

After a reco

10.13.4 Re

- No evide
- Insulation
- Wet lea⊦

61
10
10
To mo ha
10
Th

10 Pr 10 Te

Ве

1

4

10

Те

a)

b)

То

Th₁ sp€

10₋

Α τ len teri

- c) A storage container
- d) A launcher capable hit the module with launcher to the mod the test requirement
- e) Rigid mount for supposite with the impact surfa
- f) A balance for determ
- g) An instrument for n velocity sensor shall

As an example, Figure horizontal pneumatic I electronically measures beams.

Diameter	Mas
mm	g
12,5	0,9
15	1,6
25	7,5
35	20,

10.17.3 Proce

- a) Using the m including so
- b) Examine ear requirement
 - no crack
 - diameter
 - mass wit
- c) Place the ba
- d) Ensure that room temper
- e) Fire a numb adjust the la in the preso Table 2.
- f) Install the mi
- g) Take an ice first impact I ball from the

- h) Inspect the module in the impact area for signs of damage and make effects of the shot. Errors of up to 10 mm from the specified location a
- i) if the module is undamaged, repeat steps g) and h) for all the ot shown in Table 3, as illustrated in Figure 7.

Table 3 - Impact locations

Shot Number	Location
1	A corner of the module window, not more than 50 mm from the
2	An edge of the module, not more than 12 mm from the frame.
3,4	Over the edge of the circuit.
5,6	Over the circuit near cell interconnects.
7,8	Near the point of mounting on the circuit.
9,10	In the center of the circuit, farthest from the mounting points.
11	Any point which may prove especially vulnerable to hail impac

Figure 7 - Impact locations

10.17.4 Final measurements

Repeat tests 10.1 and 10.3.

10.17.5 Requirements

- No evidence of major visual defects, as defined in Clause 7.
- Insulation resistance shall meet the same requirements as for the initia

10.18 Bypass diode thermal test

10.18.1 Purpose

To assess the adequacy of the thermal design and relative long-term reliadiodes used to limit the detrimental effects of module hot-spot susceptibility

If the bypass diodes are not accessible in the module type under test, a be prepared for this test. This sample shall be fabricated to provide environment for the diode as a standard production modules under test a 61646 © IEC:

be an active during the tes only for the by

10.18.2 Appa

- a) Means for
- b) Means for ±1 °C.
- c) Means for Measurem or by mea should be transfer pa
- d) Means for
- e) Means for module ur throughou

10.18.3 Proc

- a) Electrically
- b) Determine sheet.
- c) Measure tr
- d) Connect w terminals c the wiring (

NOTE 1 Sol jumper cable

- e) Heat the me voltage of i
- Using the temperatur₁ using the fo

where

 $T_{\mathbf{j}}$

 $T_{\sf case}$

 R_{THjc}

=

=

 V_{D}

 I_{D}

NOTE 2 If the 43 °C ± 3 °C

- g) Increase the measured 📢 current flov
- h) Verify that |

NOTE 3 Diode opera

10.18.4 Procedu

- a) Electrically she
- b) Determine the sheet.
- c) Connect the le
- d) It is recommer

NOTE The lead wire

- e) Put the modul reaches satura
- f) Apply the puls module, measu
- g) As the same pr
- h) As the same pi
- i) As the same pr
- j) Then, obtain the and $V_{\rm D4}$.

NOTE This $V_{\rm D}$ certification.

- k) Heat the modu current of the voltage of the
- I) Using the $V_{\rm D}$ test in k).
- m) Increase the a
- n) Maintain the cu
- o) Verify that the

10.18.5 Final Mea

Repeat tests 10.1

61646 NoInTh10.19 10.19 To st 10.19 a) A
b) A
c) Mo
re
d) Mo
e) Re 10.19 a) At max b) W 60 c) Du 10 oc int fol me wi 10.19 Repea 10.19. – No – Ins – Aft

Bibliography

IEC 60904-5, Photovoltaic dévices – Part 5: Determination of e (ECT) of photovoltaic (PV) devices by the open-circuit voltage me

IEC 60904-8, Photovoltaic devices – Part 8: Measurement o photovoltaic (PV) device

IEC 61853, Performance testing and energy rating of terrestrial p

¹ Under consideration.